Welcome to the first post in our exciting series on mastering offline data pipeline’s best practices, focusing on the potent combination of Apache Airflow and data processing engines like Hive and Spark. This post focuses on elevating our data engineering game, streamlining your data workflows, and significantly cutting computing costs. The need to optimize offline data pipeline optimization has become a necessity with the growing complexity and scale of modern data pipelines.
In this kickoff post, we delve into the intricacies of Apache Airflow and AWS EMR, a managed cluster platform for big data processing. Working together, they form the backbone of many modern data engineering solutions. However, they can become a source of increased costs and inefficiencies without the right optimization strategies. Let’s dive into the journey to transform your data workflows and embrace cost-efficiency in your data engineering environment.