In this short article, we’ll explore loan approvals using a variety of tools and techniques. We’ll begin by analyzing loan data and applying Logistic Regression to predict loan outcomes. Building on this, we’ll integrate BERT for Natural Language Processing to enhance prediction accuracy. To interpret the predictions, we’ll use SHAP and LIME explanation frameworks, providing insights into feature importance and model behavior. Finally, we’ll explore the potential of Natural Language Processing through LangChain to automate loan predictions, using the power of conversational AI.

The notebook file used in this article is available on GitHub.

Leave a Reply

Your email address will not be published. Required fields are marked *